The generalized confluent hypergeometric function

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the confluent hypergeometric function coming from the Pareto distribution

Making use of the confluent hypergeometric function we can obtain the Laplace-Stieltje transform of the Pareto distribution in the following form ζ(s) = hU(1; 1− h; s) = 1F1(1; 1− h; s)− Γ(1− h)s1F1(1 + h; 1 + h; s). About this transform, we obtain an identity, Γ(1 + h)|U(1, 1− h, s)|2 = ∫ ∞ 0 ∫ ∞ 0 λhe−λ−y |λ+ s|2 + λy 2000 Mathematical Subject Classification: 33C15, 60E07

متن کامل

Properties of the Bivariate Confluent Hypergeometric Function Kind 1 Distribution

The bivariate confluent hypergeometric function kind 1 distribution is defined by the probability density function proportional to x1 1 x2 2 1 F1(α; β; −x1 − x2). In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1 + X2), X1 + X2 and 2 √ X1X2. The density function of 2 √ X1X2 is represented in terms of modified Bessel function of the s...

متن کامل

Multivariate Generalization of the Confluent Hypergeometric Function Kind 1 Distribution

The confluent hypergeometric function kind 1 distribution with the probability density function pdf proportional to x −11F1 α; β;−x , x > 0 occurs as the distribution of the ratio of independent gamma and beta variables. In this article, a multivariate generalization of this distribution is defined and derived. Several pertinent properties of this multivariate distribution are discussed that sh...

متن کامل

A Connection Formula for the q-Confluent Hypergeometric Function

We show a connection formula for the q-confluent hypergeometric functions 2φ1(a, b; 0; q, x). Combining our connection formula with Zhang’s connection formula for 2φ0(a, b;−; q, x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the connection formula of Kummer’s confluent hypergeometric functions by taking the limit q → 1− of our...

متن کامل

Solution of Volterra-type integro-differential equations with a generalized Lauricella confluent hypergeometric function in the kernels

The object of this paper is to solve a fractional integro-differential equation involving a generalized Lauricella confluent hypergeometric function in several complex variables and the free term contains a continuous function f (τ). The method is based on certain properties of fractional calculus and the classical Laplace transform. A Cauchy-type problem involving the Caputo fractional derivat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1992

ISSN: 0386-2194

DOI: 10.3792/pjaa.68.290